If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13-(t+(t^2)/2)=13/2
We move all terms to the left:
13-(t+(t^2)/2)-(13/2)=0
We add all the numbers together, and all the variables
-(t+t^2/2)+13-(+13/2)=0
We get rid of parentheses
-t^2/2-t+13-13/2=0
We multiply all the terms by the denominator
-t^2-t*2-13+13*2=0
We add all the numbers together, and all the variables
-1t^2-t*2+13=0
Wy multiply elements
-1t^2-2t+13=0
a = -1; b = -2; c = +13;
Δ = b2-4ac
Δ = -22-4·(-1)·13
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{14}}{2*-1}=\frac{2-2\sqrt{14}}{-2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{14}}{2*-1}=\frac{2+2\sqrt{14}}{-2} $
| 18x+25+12x+5=180 | | (1+4s)(3)= | | 80x-16^2-96=0 | | 53÷6=8r5 | | 3x=13-3x=20 | | 25x-x2= | | n13=4;n=52 | | 13-(t+(t^2)/2)=0 | | (x+1)^2=1.17 | | (x+1)^2=1.15 | | 11=3s-2 | | x-7/3=13 | | 14.65+0.12(x+3)=15.40-0.16x | | t(t+4t)=-3 | | X+10+x+2x+10=180 | | 7+2x=6x-24 | | 645=8x | | 2d+14=16 | | 8+7d=13 | | 9a(8+9)=8a+-9 | | 1/2-6/5x=-2/3 | | (6x+7x)=(6x+10) | | 6=1-2(n+5)+7 | | 1/4x=(-20 | | 9a+7=98a(6+7) | | 2,485=35(p+30) | | 4(x+5)=-18+2x | | (11x-5)°=180 | | 11x+6=1/7(7x-35) | | 9+45a=5+4a | | +3x=30 | | 3.21m=16.05 |